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Abstract. Motived by the necessity of explicit and reliable calculations, as a valid contribution to clarify
the effectiveness and, possibly, the limits of the Tsallis thermostatistics, we formulate the Two-Time Green
Functions Method in nonextensive quantum statistical mechanics within the optimal Lagrange multiplier
framework, focusing on the basic ingredients of the related Spectral Density Method (SDM). Besides, to
show how the SDM works, we have performed, to the lowest order of approximation, explicit calculations
of the low-temperature properties for a quantum d-dimensional spin-1/2 Heisenberg ferromagnet with
long-range interactions decaying as 1/rp (r is the distance between spins in the lattice).

PACS. 05.30.-d Quantum statistical mechanics – 05.70.-a Thermodynamics – 75.10.Jm Quantized spin
models

1 Introduction

Green’s functions (GF’s) are currently used in many-body
physics and their power and success are widely recog-
nized [1]. There exists at present a large variety of methods
and techniques for calculation of the GF’s both in classi-
cal and quantum thermostatistics [1–5]. In particular, the
related spectral density method (SDM), originally formu-
lated by Kalashnikov and Fradkin [4] for quantum many-
body systems, is a powerful nonperturbative tool which
allows a direct study of the macroscopic properties of in-
teracting quantum and classical many-body systems [4–8]
also involving phase transitions.

Recently, the increasing interest in Tsallis’ nonex-
tensive thermostatistics [9], has stimulated a lot of
works [10,11] on the extension of the GF formalism also to
this Tsallis’ generalized framework of the statistical me-
chanics with the aim to provide new and effective methods
for dealing with realistic nonextensive problems. Along
this direction, the two-time GF technique and SDM have
been formulated in classical nonextensive thermostatistics
in two our papers [11] with application to the Heisenberg
spin chain with short-range interactions. Here we wish
to present the extension of the same formalism in quan-
tum nonextensive thermostatistics by using the optimal
Lagrange multiplier (OLM) representation [12], focusing
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on the spectral density (SD) and its spectral decomposi-
tion for their relevance in explicit calculations. Then, in
order to show how the method works in the nonexten-
sive context, we apply the extended SDM to a quantum
d-dimensional spin-1/2 Heisenberg ferromagnet with long-
range interactions decaying as r−p (r is the spin distance
and p the decay exponent) and explore, to the lowest or-
der of approximation, the nonextensivity effects on the
low-temperature magnetic properties of the model.

In Section 2 we summarize some basic ingredients of
the nonextensive quantum thermostatistics in the OLM
representation for next utility. Sections 3 and 4 are de-
voted to the extension of the GF formalism and of the
SDM in the nonextensive context, respectively. In Sec-
tion 5 the extended SDM is applied to the above men-
tioned spin model. Finally, some concluding remarks are
drawn in Section 6.

2 The OLM representation of quantum
nonextensive statistical mechanics

The Tsallis’ quantum thermostatistics [9] is essentially
based on the so called q-entropy (with kB = � = 1)

Sq =
1 − Trρq

q

q − 1
, (1)

where ρq is the generalized density operator satisfying
the normalization condition Trρq = 1. In this framework,
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the generalization of the statistical average (referred as q-
expectation value or q-mean value) for the observable O is
given by

〈O〉q =
Tr

[
ρq

qO
]

Tr [ρq
q]

. (2)

Here, q is a real parameter (called the nonextensivity in-
dex ) which measures the degree of nonextensivity.

Working in the canonical ensemble, the statistical op-
erator ρq can be determined adopting the OLM constraint
prescriptions in the extremization procedure of Sq [9,12].
Then, assuming the Hamiltonian H of the system to
have a complete orthonormal set of eigenvectors {|n〉}
with eigenvalues {εn}, the normalized probability pn =
〈n| ρq |n〉 associated with the nth eigenstate is given by

pn = Z−1
q [1 − β(1 − q) (εn − Uq)]

1
1−q , (3)

where

Zq =
∑

n

[1 − β(1 − q) (εn − Uq)]
1

1−q , (4)

and the q-internal energy Uq = 〈H〉q is given by

Uq = Z
−1

q

∑

n

pq
nεn. (5)

Here 〈n| ρq
q |m〉 = pq

nδnm are the matrix elements of the op-
erator ρq

q in the {|n〉} representation and Zq = Tr
[
ρq

q

]
=∑

n pq
n denotes the pseudo-partition function in the nor-

malized OLM framework (Z1 is not merely the exten-
sive partition function but contains an extra factor). In
the previous equations, β = 1/T and T is the thermo-
dynamic temperature. It is worth mentioning that, for
q < 1, the formalism imposes a high-energy cutoff, i.e.
pn = 0 whenever the argument of the power function in
equations (3), (4) becomes negative [9].

3 Two-time q-Green functions and q-spectral
density

In the quantum nonextensive thermostatistics, we define
the two-time retarded and advanced GF’s (q-GF’s) for two
arbitrary operators A and B as

G
(ν)
qAB (t, t′) = −iθν (t − t′) 〈[A(t), B(t′)]η〉q , (6)

where ν = r, a stands for “retarded” and “advanced”, re-
spectively. Here, θa(t − t′) = −θ(t′ − t) and θr(t − t′) =
θ(t − t′), being θ(x) the step function; [..., ...]η denotes a
commutator (η = −1) or anticommutator (η = +1); X(t)
(with X = A, B) is the usual Heisenberg representation
of operator X at time t. Of course, for q = 1, the conven-
tional formalism is reproduced. It is worth nothing that,
for general operators A and B, one can develop the q-GF’s
framework equivalently with commutators or anticommu-
tators. However, for fermionic or bosonic operators it is

of course convenient to use in equation (6) η = −1 or
η = +1, respectively.

It is now relatively simple generalize most of the ba-
sic properties of the conventional two-time GF proper-
ties [1,2] in nonextensive context [11].

Within equilibrium ensembles, the functions
G

(ν)
qAB (t, t′) depend on times only through the dif-

ference τ = t− t′ and hence one can introduce the Fourier
transform

G
(ν)
qAB (ω) =

∫ +∞

−∞
dτG

(ν)
qAB (τ) eiωτ . (7)

Besides, in strict analogy with the GF extensive formal-
ism [2,4], the generalized spectral density (q-SD) in the
ω-representation is defined by

ΛqAB (ω) =
∫ +∞

−∞
dteiωτ 〈[A(τ), B]η〉q , (8)

in terms of which it is easy to write the spectral represen-
tation of the associated q-GF’s

G
(ν)
qAB (ω) =

∫ +∞

−∞

dω′

2π

ΛqAB(ω′)
ω − ω′ + (−1)νiε

, ε → 0+, (9)

where (−1)ν stands for +1 if ν = r and −1 if ν = a.
These functions can be analytically continued in the com-
plex ω-plane and combined to construct the single q-GF
GqAB (ω) =

∫ +∞
−∞

dω′
2π

ΛqAB(ω′)
ω−ω′ of complex ω with a cut

along the real axis.
As a next step, one can immediately obtain the spec-

tral decomposition of the q-SD. Indeed, by using equa-
tions (3)–(5), from the definition (8) we have the exact
representation:

ΛqAB(ω) =
2π

Zq

∑

nm

pq
n

[
1 + η

(
pm

pn

)q]

× AnmBmnδ (ω − ωmn) , (10)

with ωmn = εm−εn. Then, the spectral decomposition for
G

(ν)
qAB (ω) follows directly from the ω-representation (9). In

particular, for GqAB (ω) we have

GqAB(ω) =
1

Zq

∑

nm

[pq
n + ηpq

m]
AnmBmn

ω − ωmn
. (11)

In strict analogy with the extensive case [4,6,8], equa-
tion (11) suggests that the real poles ωmn of GqAB(ω)
represent the exact energy spectrum of undamped excita-
tions in the system.

A comparison of the previous relations with the cor-
responding extensive ones [4,6] suggests that the Tsallis’
statistics does not influence the meaning of GF singulari-
ties, but drastically modifies the structure of the spectral
weights introducing a mixing of energy levels.
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4 The q-spectral density method (q-SDM)

Now we have all the necessary ingredients to extend the
SDM in the Tsallis’ formalism. By successive derivatives
of ΛqAB(τ) = 〈[A(τ), B]η〉q =

∫ +∞
−∞ dωΛqAB(ω)e−iωτ/2π

with respect to τ and then setting τ = 0, one obtains
the infinite set of exact equations of motion or sum rules
for ΛqAB(ω)

∫ +∞

−∞

dω

2π
ωmΛqAB (ω) = 〈[Lm

HA, B]η〉q , (m = 0, 1, 2, ...),

(12)
where the quantity on the left-hand side of equation (12)
is called the m-moment of ΛqAB(ω) and Lm

H (m =
0, 1, 2, ...) acts as L0

HA = A, L1
HA = [A, H ]−, L2

HA =[
[A, H ]− , H

]
− and so on.

The set of integral equations (12) represents a typical
moment problem which should determine exactly the un-
known q-SD. Of course, in practical calculations we must
look for an approximated solution of ΛqAB (ω), which cap-
tures the essential physics of the system under study, trun-
cating the set (12) at a given order.

Suggested by the exact spectral decomposition (10), as
a suitable approximation for ΛqAB(ω), one can assume a
finite sum of properly weighted δ-functions (the so called
polar ansatz )

ΛqAB(ω) = 2π

n∑

k=1

λ
(k)
qABδ(ω − ω

(k)
qAB), (13)

where n is a finite integer number and the unknown
parameters λ

(k)
qAB and ω

(k)
qAB are to be determined self-

consistently solving the first 2n moment equations in the
set (12).

In several situations of experimental interest, also the
damping of excitations may be quite relevant so that the
polar approximation (13) is inadequate. In this case, to
take properly into account the finite life-time of quasi-
particles, one can assume, as in the extensive case [6,8],
the so called modified Gaussian ansatz

ΛqAB(ω) = 2πω

n∑

k=1

λ
(k)
qAB

exp
[
−

(
ω − ω

(k)
qAB

)2

/Γ
(k)
qAB

]

√
πΓ

(k)
qAB

,

(14)
where Γ

(k)
qAB represents the width of the peak at ω =

ω
(k)
qAB and the life-time of the excitations with fre-

quency ω
(k)
qAB is given by τ

(k)
qAB =

√
Γ

(k)
qAB under the con-

dition Γ
(k)
qAB/

[
ω

(k)
qAB

]2

� 1. It is worth noting that, the
q-SDM is quite general and can be easily applied to dif-
ferent models by introducing the appropriate q-SD.

5 The quantum spin-1/2 Heisenberg
ferromagnet with long-range interactions:
a q-SDM approach to the lowest order
of approximation

The quantum d-dimensional spin-1/2 Heisenberg ferro-
magnet with long-range interactions [13] is described in
the k-space by the Hamiltonian

H = − 1
2N

∑

k

J (k)
(
S+

k S−
−k + Sz

kSz
−k

) − hSz
0 . (15)

Here h is the external magnetic field, N is the number
of sites {j} of a hypercubic lattice with unitary spacing;
Sk, S±

k and J (k) are the Fourier transforms of the spin
operators Sj , S±

j = Sx
j ±iSy

j and the exchange interaction
Jij = J/ |ri−rj |p (p > 0, J > 0), respectively, and the
k-sum is restricted over the first Brillouin zone (1BZ).

For spin model (15), the q-expectation value of the
magnetization per site is given by

mq =
1
N

N∑

j=1

〈
Sz

j

〉
q

=
1
2
− 1

N2

∑

k

〈
S−
−kS+

k

〉
q
. (16)

Due to the operatorial representation (15)–(16), in the
framework of the q-SDM it is convenient to introduce the
q-SD

Λqk(ω) =
∫ ∞

−∞
dteiωτ

〈[
S+

k (τ) , S−
−k

]
−

〉

q
, (17)

which satisfy the infinite hierarchy of moment equations

∫ +∞

−∞

dω

2π
ωmΛqk(ω) =

〈
[Lm

HS+
k , S−

−k]−
〉

q
,

(m = 0, 1, 2, ...). (18)

To the lowest order of approximation, we can assume
for Λqk(ω) the one δ-function polar ansatz

Λqk(ω) = 2πλqkδ(ω − ωqk), (19)

where the unknown parameters λqk and ωqk can be de-
termined by solving the first 2 moment equations of
the set (18). Then, working close to q = 1 and with
the near saturation condition

〈
Sz

kSz
−k

〉 ≈ 〈Sz
k〉

〈
Sz
−k

〉
=

N2m2
qδk,0 [7], we obtain for ωqk and mq the set of self-

consistent equations (with λqk = 2Nmq)

ωqk = h+JΩp(k)mq +
J

N

∑

k′

[Ωp(k − k′) − Ωp(k′)]

1 − [1 − β (1 − q)ωqk′ ]
q

1−q

,

(20)

mq =
1
2
− 1

N

∑

k

2mq

[1 − β (1 − q)ωqk]
q

q−1 − 1
, (21)

where

Ωp(k) =
J(0) − J(k)

J
=

∑

r

1 − cosk · r
|r|p . (22)



76 The European Physical Journal B

It is worth noting that in equation (20), which deter-
mines the q-excitation spectrum ωqk, the contribution
h+JΩp(k)mq is formally identical to the known Tyablikov
dispersion relation [1,2] for the corresponding extensive
problem.

The solution of the self-consistent problem (20)–(22)
is rather complicate and one must consider asymptotic
regimes for obtaining explicit analytical results. For in-
stance, in the low-temperature ferromagnetic phase, we
can resort to the Tyablikov-like approximation

ωqk ≈ ω
(T )
k = h +

1
2
JΩp(k), (23)

as a zero order in equations (20), (21). So, in the ther-
modynamic limit N → ∞, equation (21) yields a cumber-
some expression for the q-magnetization mq(β, h) which,
for q = 1, reproduces the extensive counterpart [13] and
can be used to obtain explicit expansion as q → 1.

Interesting representation for mq(β, h) and the
q-susceptibility χq (β, h) = ∂mq(β, h)/∂h in the nearly
saturation regime can be obtained, for d < p < 2d,
under condition βh(q − 1) > 1. Assuming the low-k
expansion Ωp(k) ≈ Ad(p)kp−d [13], where Ad(p) =
πddd−p [Γ (p)]−d

/ sin[π(p − d)/2] and Γ (z) the gamma
function, we find indeed

mq(β, h) � 1
2
− KdΛ

d

d (1 + βh(q − 1))
q

q−1

× 2F1

(
d

p − d
,

q

q − 1
;

p

p − d
;−JAd(p)β(q − 1)Λp−d

2 (1 + βh(q − 1))

)
,

(24)

χq (β, h) � KdΛ
dβ

(p − d) (1 + βh(q − 1))
2q−1
q−1

×

⎧
⎪⎨

⎪⎩

q − 1
[
1 + JAd(p)β(q−1)Λp−d

2(1+βh(q−1))

] q
q−1

+
[
1 − (2 − p

d
)q

]
2F1

(
d

p − d
,

q

q − 1
;

p

p − d
;

−JAd(p)β(q − 1)Λp−d

2 (1 + βh(q − 1))

)
⎫
⎪⎬

⎪⎭
. (25)

Here, 2F1 (a, b; c; z) is the hypergeometric function, Kd =
21−dπ−d/2/Γ (d/2) and Λ is a wave vector cut-off related
to the 1BZ of the spin lattice.

If, additionally, we assume βh(q − 1) � 1 as T =
β−1 → 0, equations (24) and (25) yield mq(β, h) �
1/2−A(q)

d (h)T
q

q−1 and χq (β, h) � B(q)
d (h)T

q
q−1 , where the

explicit expressions of A(q)
d (h) and B(q)

d (h) (with h 	= 0)
are inessential for our purposes.

The intrinsically nonextensive region (p ≤ d), which is
not of primary interest in this short contribution, requires
a more delicate analysis which will be the subject of a
future work.

6 Concluding remarks

In this short note we have extended, in nonextensive quan-
tum thermostatistics, the two-time GF formalism and the
related SDM already developed for quantum [4,6] and
classical [5,7,8] extensive systems. This offers the possi-
bility to explore, at least in principle, the properties of
realistic systems by using the big amount of experiences
acquired in extensive problems. In case of the Heisenberg
model (15), the polar ansatz (19) yields reasonable re-
sults for the excitation spectrum and the relevant ther-
modynamic q-quantities in the low temperature regime.
For describing other thermodynamic regimes in a wider
range of temperatures, one could to adopt a new set of ap-
proximations involving additional decoupling procedures
and higher order moment equations, consistently with the
spirit of the SDM [4–8].
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